162 research outputs found

    Gaming with eutrophication: Contribution to integrating water quantity and quality management at catchment level

    Full text link
    The Metropolitan Region of Sao Paulo (MRSP) hosts 18 million inhabitants. A complex system of 23 interconnected reservoirs was built to ensure its water supply. Half of the potable water produced for MRSP's population (35 m3/s) is imported from a neighbour catchment, the other half is produced within the Alto Tietê catchment, where 99% of the population lives. Perimeters of land use restriction were defined to contain uncontrolled urbanization, as domestic effluents were causing increasing eutrophication of some of these reservoirs. In the 90's catchment committees and sub committees were created to promote discussion between stakeholders and develop catchment plans. The committees are very well structured "on paper". However, they are not very well organised and face a lack of experience. The objective of this work was to design tools that would strengthen their discussion capacities. The specific objective of the AguAloca process was to integrate the quality issue and its relation to catchment management as a whole in these discussions. The work was developed in the Alto Tietê Cabeceiras sub-catchment, one of the 5 sub catchments of the Alto-Tietê. It contains 5 interconnected dams, and presents competitive uses such as water supply, industry, effluent dilution and irrigated agriculture. A RPG was designed following a companion modelling approach (Etienne et al., 2003). It contains a friendly game-board, a set of individual and collective rules and a computerized biophysical model. The biophysical model is used to simulate water allocation and quality processes at catchment level. It articulates 3 modules. A simplified nutrient discharge model permits the estimation of land use nutrient exportation. An arc-node model simulates water flows and associated nutrient charges from one point of the hydrographical network to another. The Vollenweider model is used for simulating specific reservoir dynamics. The RPG allows players to make individual and collective decisions related to water allocation and the management of its quality. Impacts of these decisions are then simulated using the biophysical model. Specific indicators of the game are then updated and may influence player's behaviour (actions) in following rounds. To introduce discussions on the management of water quality at a catchment level, an issue that is rarely explicitly dealt with, four game sessions were implemented involving representatives of basin committees and water and sanitation engineers. During the game session, the participants took advantage of the water quality output of the biophysical model to test management alternatives such as rural sewage collection or effluent dilution. The biophysical model accelerated calculations of flows and eutrophication rates that were then returned to the game board with explicit indicators of quantity and quality. Players could easily test decisions impacting on qualitative water processes and visualize the simulation results directly on the game board that was representing a friendly, virtual and simplified catchment. The Agualoca game proved its ability to turn complex water processes understandable for a non totally initiated public. This experience contributed to a better understanding of multiple-use water management and also of joint management of water quality and quantity. (Résumé d'auteur

    The use of digital photography for the definition of coastal biotopes in Azores.

    Get PDF
    Copyright © Springer Science+Business Media B.V. 2007.Sampling benthic communities usually requires intensive field and lab work which is generally performed by skilled staff. In algal dominated communities, like those on the shores of the Azores, biotope characterization studies focused on the more conspicuous algae categories, thus reducing the skills required for species identification. The present study compares in situ quadrat quantifications done by a skilled reader, with computer based quadrat quantifications using digital photographic records of the same areas read in situ, accomplished by skilled and non-skilled readers. The study was conducted inter- and subtidally at various shore heights/depths. Quantification of algal coverage, both in situ and computer based, used the point to point method with quadrats of 0.25 m × 0.25 m for the intertidal, and 0.50 m × 0.50 m for the subtidal surveys, both subdivided into 36 intersection points. Significant differences were found between in situ readings and computer based readings of photographic records conducted both by experienced and inexperienced readers. Biotopes identified using in situ data and image based data differ both for the subtidal and intertidal

    NGF Is an Essential Survival Factor for Bronchial Epithelial Cells during Respiratory Syncytial Virus Infection

    Get PDF
    Background: Overall expression of neurotrophins in the respiratory tract is upregulated in infants infected by the respiratory syncytial virus (RSV), but it is unclear where (structural vs. inflammatory cells, upper vs. lower airways) and why, these changes occur. We analyzed systematically the expression of neurotrophic factors and receptors following RSV infection of human nasal, tracheal, and bronchial epithelial cells, and tested the hypothesis that neurotrophins work as innate survival factors for infected respiratory epithelia. Methodology: Expression of neurotrophic factors (nerve growth factor, NGF; brain-derived neurotrophic factor, BDNF) and receptors (trkA, trkB, p75) was analyzed at the protein level by immunofluorescence and flow cytometry and at the mRNA level by real-time PCR. Targeted siRNA was utilized to blunt NGF expression, and its effect on virus-induced apoptosis/ necrosis was evaluated by flow cytometry following annexin V/7-AAD staining. Principal Findings: RSV infection was more efficient in cells from more distal (bronchial) vs. more proximal origin. In bronchial cells, RSV infection induced transcript and protein overexpression of NGF and its high-affinity receptor trkA, with concomitant downregulation of the low-affinity p75 NTR. In contrast, tracheal cells exhibited an increase in BDNF, trkA and trkB, and nasal cells increased only trkA. RSV-infected bronchial cells transfected with NGF-specific siRNA exhibited decreased trkA and increased p75 NTR expression. Furthermore, the survival of bronchial epithelial cells was dramaticall

    Chronic VEGF Blockade Worsens Glomerular Injury in the Remnant Kidney Model

    Get PDF
    VEGF inhibition can promote renal vascular and parenchymal injury, causing proteinuria, hypertension and thrombotic microangiopathy. The mechanisms underlying these side effects are unclear. We investigated the renal effects of the administration, during 45 days, of sunitinib (Su), a VEGF receptor inhibitor, to rats with 5/6 renal ablation (Nx). Adult male Munich-Wistar rats were distributed among groups S+V, sham-operated rats receiving vehicle only; S+Su, S rats given Su, 4 mg/kg/day; Nx+V, Nx rats receiving V; and Nx+Su, Nx rats receiving Su. Su caused no change in Group S. Seven and 45 days after renal ablation, renal cortical interstitium was expanded, in association with rarefaction of peritubular capillaries. Su did not worsen hypertension, proteinuria or interstitial expansion, nor did it affect capillary rarefaction, suggesting little angiogenic activity in this model. Nx animals exhibited glomerulosclerosis (GS), which was aggravated by Su. This effect could not be explained by podocyte damage, nor could it be ascribed to tuft hypertrophy or hyperplasia. GS may have derived from organization of capillary microthrombi, frequently observed in Group Nx+Su. Treatment with Su did not reduce the fractional glomerular endothelial area, suggesting functional rather than structural cell injury. Chronic VEGF inhibition has little effect on normal rats, but can affect glomerular endothelium when renal damage is already present

    Diabetic Kidney Disease in FVB/NJ Akita Mice: Temporal Pattern of Kidney Injury and Urinary Nephrin Excretion

    Get PDF
    Akita mice are a genetic model of type 1 diabetes. In the present studies, we investigated the phenotype of Akita mice on the FVB/NJ background and examined urinary nephrin excretion as a marker of kidney injury. Male Akita mice were compared with non-diabetic controls for functional and structural characteristics of renal and cardiac disease. Podocyte number and apoptosis as well as urinary nephrin excretion were determined in both groups. Male FVB/NJ Akita mice developed sustained hyperglycemia and albuminuria by 4 and 8 weeks of age, respectively. These abnormalities were accompanied by a significant increase in systolic blood pressure in 10-week old Akita mice, which was associated with functional, structural and molecular characteristics of cardiac hypertrophy. By 20 weeks of age, Akita mice developed a 10-fold increase in albuminuria, renal and glomerular hypertrophy and a decrease in the number of podocytes. Mild-to-moderate glomerular mesangial expansion was observed in Akita mice at 30 weeks of age. In 4-week old Akita mice, the onset of hyperglycemia was accompanied by increased podocyte apoptosis and enhanced excretion of nephrin in urine before the development of albuminuria. Urinary nephrin excretion was also significantly increased in albuminuric Akita mice at 16 and 20 weeks of age and correlated with the albumin excretion rate. These data suggest that: 1. FVB/NJ Akita mice have phenotypic characteristics that may be useful for studying the mechanisms of kidney and cardiac injury in diabetes, and 2. Enhanced urinary nephrin excretion is associated with kidney injury in FVB/NJ Akita mice and is detectable early in the disease process

    The spike-timing-dependent learning rule to encode spatiotemporal patterns in a network of spiking neurons

    Full text link
    We study associative memory neural networks based on the Hodgkin-Huxley type of spiking neurons. We introduce the spike-timing-dependent learning rule, in which the time window with the negative part as well as the positive part is used to describe the biologically plausible synaptic plasticity. The learning rule is applied to encode a number of periodical spatiotemporal patterns, which are successfully reproduced in the periodical firing pattern of spiking neurons in the process of memory retrieval. The global inhibition is incorporated into the model so as to induce the gamma oscillation. The occurrence of gamma oscillation turns out to give appropriate spike timings for memory retrieval of discrete type of spatiotemporal pattern. The theoretical analysis to elucidate the stationary properties of perfect retrieval state is conducted in the limit of an infinite number of neurons and shows the good agreement with the result of numerical simulations. The result of this analysis indicates that the presence of the negative and positive parts in the form of the time window contributes to reduce the size of crosstalk term, implying that the time window with the negative and positive parts is suitable to encode a number of spatiotemporal patterns. We draw some phase diagrams, in which we find various types of phase transitions with change of the intensity of global inhibition.Comment: Accepted for publication in Physical Review

    Neuronal Assembly Detection and Cell Membership Specification by Principal Component Analysis

    Get PDF
    In 1949, Donald Hebb postulated that assemblies of synchronously activated neurons are the elementary units of information processing in the brain. Despite being one of the most influential theories in neuroscience, Hebb's cell assembly hypothesis only started to become testable in the past two decades due to technological advances. However, while the technology for the simultaneous recording of large neuronal populations undergoes fast development, there is still a paucity of analytical methods that can properly detect and track the activity of cell assemblies. Here we describe a principal component-based method that is able to (1) identify all cell assemblies present in the neuronal population investigated, (2) determine the number of neurons involved in ensemble activity, (3) specify the precise identity of the neurons pertaining to each cell assembly, and (4) unravel the time course of the individual activity of multiple assemblies. Application of the method to multielectrode recordings of awake and behaving rats revealed that assemblies detected in the cerebral cortex and hippocampus typically contain overlapping neurons. The results indicate that the PCA method presented here is able to properly detect, track and specify neuronal assemblies, irrespective of overlapping membership

    Time Scale Hierarchies in the Functional Organization of Complex Behaviors

    Get PDF
    Traditional approaches to cognitive modelling generally portray cognitive events in terms of ‘discrete’ states (point attractor dynamics) rather than in terms of processes, thereby neglecting the time structure of cognition. In contrast, more recent approaches explicitly address this temporal dimension, but typically provide no entry points into cognitive categorization of events and experiences. With the aim to incorporate both these aspects, we propose a framework for functional architectures. Our approach is grounded in the notion that arbitrary complex (human) behaviour is decomposable into functional modes (elementary units), which we conceptualize as low-dimensional dynamical objects (structured flows on manifolds). The ensemble of modes at an agent’s disposal constitutes his/her functional repertoire. The modes may be subjected to additional dynamics (termed operational signals), in particular, instantaneous inputs, and a mechanism that sequentially selects a mode so that it temporarily dominates the functional dynamics. The inputs and selection mechanisms act on faster and slower time scales then that inherent to the modes, respectively. The dynamics across the three time scales are coupled via feedback, rendering the entire architecture autonomous. We illustrate the functional architecture in the context of serial behaviour, namely cursive handwriting. Subsequently, we investigate the possibility of recovering the contributions of functional modes and operational signals from the output, which appears to be possible only when examining the output phase flow (i.e., not from trajectories in phase space or time)
    corecore